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ABSTRACT: Metabolic circuits are a promising alternative to
other conventional genetic circuits as modular parts
implementing functionalities required for synthetic biology
applications. To date, metabolic design has been mainly
focused on production circuits. Emergent applications such as
smart therapeutics, however, require circuits that enable
sensing and regulation. Here, we present RetroPath, an
automated pipeline for embedded metabolic circuits that
explores the circuit design space from a given set of
specifications and selects the best circuits to implement
based on desired constraints. Synthetic biology circuits embedded in a chassis organism that are capable of controlling the
production, processing, sensing, and the release of specific molecules were enumerated in the metabolic space through a standard
procedure. In that way, design and implementation of applications such as therapeutic circuits that autonomously diagnose and
treat disease, are enabled, and their optimization is streamlined.
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Synthetic biology aims at translating methods and
techniques from engineering into biology in order to

streamline the design and implementation of devices through
standardized parts.1 To that end, metabolic circuits stand out as
a promising alternative to other proposed genetic circuits2 for
developing modular parts implementing most of the basic
functionalities required in advanced synthetic biology applica-
tions. To date, metabolic design has been mainly focused on
production circuits that perform synthesis of exogenous
compound in chassis organisms. There are hundreds of such
examples in the literature.3,4 One of the most complete
engineered pathways is the one for the production of
semisynthetic artemisinin in yeast.5 Other examples of
bioproduction of pharmaceutical products through heterolo-
gous pathways include taxadiene,6 farnesol,7 or naringenin.8

Biosensors, in turn, are circuits capable of detecting biomarkers
related to environmental or disease conditions. Even though
sensing signaling pathways are mostly based on phosphor-
ylation cascades, there are some based on metabolism
regulation such as those involved in the degradation of toxic
compounds such as toluene or phenol or the well-known
mechanism of digestion of lactose through the lac operon.
Besides its function in hydrolyzing lactose, β-galactosidase has
the ability of synthesizing promiscuously allolactose, the lac
operon inducer. This mechanism of the lac operon shows how
enzyme promiscuity is a natural strategy for regulation that can
be exploited for developing novel biosensors through metabolic
circuits.
Emergent applications such as smart therapeutics are

requiring such advanced circuits that enable sensing and
regulation of compound delivery. Examples include a synthetic

device consisting of a modified Deinococcus radiodurans-derived
protein that sensed uric acid levels and triggered the expression
of an Aspergillus f lavus urate oxidase to eliminate uric acid in
mice;9 a synthetic circuit in Escherichia coli with the ability of
sensing Pseudomonas aeruginosa quorum sensing in order to
induce the production of the pyocin antibiotic and simulta-
neosly triggering the lysis of the chassis E. coli for efficient
delivery;10 as well as other studies that focused on different
regulation strategies such as enzyme inhibition and activation
by small molecules,11 gene expression regulation using small
RNAs,12 or dynamic feedback.13,14 In particular, a class of such
advanced circuits is processing modules based on boolean
operations between signal molecules. Those metabolic circuits
as well as their interplay with genetic circuits can be formalized
using boolean logics,15−17 allowing in that way the
implementation of circuits depending on multiple inputs and
outputs through complex logical relationships with the
advantage of processing information at high speed.
Addressing the challenge of providing automated design

methodologies for such advanced metabolic circuits requires an
appropriate modeling of metabolic processes that should enable
the efficient computation of the design space associated with
any desired circuit. For that purpose, we have recently
proposed a fingerprint coding representation based on changes
in atom bonding environments where enzymatic reactions are
processed.18 The main goal of following this coding
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representation is to provide a technique that allows considering
not only metabolic transformation reported in metabolic
databases such as MetaCyc19 but also other potential
transformations that might be present due to the ability of
enzymes to accept more than one substrate or to catalyze
promiscuously some reaction other than its native one.20 In this
direction, enzyme promiscuity stands as a widely found basic
property that should allow one to expand the design space of
metabolic circuits. Such promiscuous activities, however, are
often present at weaker levels in the enzyme than desired for
efficient circuit operation. To optimize their performance,
directed evolution of individual enzymes or full metabolic
circuits would be usually needed.21,22 Therefore, arriving at the
goal of designing and constructing metabolic circuits with the
desired functionalities should be attained by proceeding in a
programmatic way that starts by exploring the design space. To
that end, we present RetroPath, an automated pipeline allowing
the design and optimization of metabolic circuits through
multiple steps upon a required set of specifications.

■ RESULTS AND DISCUSSION

Metabolic circuits are by definition a special case of synthetic
biology devices whose main function is to process chemical
compounds through enzymatic transformations. Therefore, the
distinctive feature of metabolic circuits is the fact that they use
enzymes as their main basic constitutive parts. The most
common application of metabolic circuits is to produce a
desired chemical in a chassis organism by importing
heterologous genes encoding for the enzymes that participate
in the biosynthetic pathway. More generally, metabolic circuits
can be composed of either one or a combination out of
production, sensor and processing modules (Figure 1). In the

case of sensor circuits, enzymes are used in order to connect
through metabolic transformations a chemical of interest to
another compound that can induce gene expression in the
chassis. In addition, another class of metabolic circuits are the
ones that process chemical compounds in order to produce
other chemicals through some input/output transfer function
or operation. The distinction, thus, between a specific type of
metabolic circuit or another can be reduced to the type of
input/output sets of metabolites that constitute the circuit’s
interface, whether they are endogenous or heterologous, as well
as if they belong to some specific type of compounds such as
biomarkers, inducers, or added-value compounds.
Such level of generalization is sought in our RetroPath

framework in order to approach the metabolic circuit design
problem in an automated fashion. Altogether, this problem
does not differ greatly from the problem of design space
exploration often found in embedded systems in electronics.23

The basic steps are the following: (a) Define input, output, and
metabolic space; (b) define specifications of the desired circuit;
(c) compute scope connecting input with output sets; (d)
enumerate the circuit design space; and (e) explore the design
space in order to find the optimal solution(s). We describe in
the following each of the steps.

Metabolic Space. In order to address the problem of
determining the design space, first the fraction of the chemical
space that can be processed in vivo using natural or synthetic
biology devices, the metabolic space M, needs to be
delimitated. It is acknowledged that current metabolic data-
bases, although they provide a wealth of information, they are
still far from complete in terms of all substrates and products
that potentially could be processed by known enzymes. A
glimpse into such “metabolic dark matter” is offered by

Figure 1. Metabolic circuits I/O specifications and pathways length. (a) Production: a metabolic circuit is established between the chassis and the
target product. (b) Sensing: a circuit is defined between the sensed molecules (biomarkers) and the effectors of the chassis. (c) Regulation: a module
connects the chassis to the target product, while a second module connects the target product to an effector of the chassis. Distribution of pathway
lengths in E. coli for (d) bioproduction circuits, (e) biosensor circuits, (f) bioregulation circuits.
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metabolomics experiments, where a significant amount of peaks
are still awaiting a proper identification. A big fraction of such
unidentified compounds are admittedly originated as by-
products of enzyme promiscuity. The ability of enzymes of
accepting multiple substrates and of catalyzing multiple
reactions provides alternative routes of biosynthesis and
degradation that necessarily end up into novel compounds.
The goal of quantifying such promiscuous effects, thus, is
central to an appropriate determination of the metabolic space.
For that purpose, we have proposed a solution based on
extended connectivity fingerprints (ECFPs) that codes for
changes in the atom bonding environments where the reactions
are taking place.24 Such an approach has been shown in
multiple instances to be able to appropriately model enzyme
promiscuity20 and, more interestingly, to allow the computation
in an efficient way of all compounds that potentially could be
accessed in vivo through metabolic transformations. Moreover,
by combining such modeling framework with the information
from biological databases, the metabolic space restricted to one
given chassis organism (metabolome) S can be also
determined.

For instance, the metabolic database MetaCyc19 in its 16.0
release contains 9623 metabolites and 10263 reactions. We
have previously shown that this initial metabolic space can be
expanded in the RetroPath framework through the application
of the fingerprint coding.18 For an atom bonding environment
of 5 (diameter of 10),24 we found that 25227 new compounds
could be generated, within a total expanded space of 65827
reactions. The purpose of such expansion is to get a first
estimate of the full extent of all compounds that can be
accessed in vivo. However, we must assume that most of these
compounds, even though they could potentially be produced
through the expanded reactions, they might appear in weak
concentrations, as they correspond to products of non-native
reactions often with low efficiency. We analyzed more closely
this issue in the case of an extract from E. coli BL21, a chassis
organism that is often used for synthetic and metabolic
engineering applications. The distribution of masses from the
observed peaks in the spectrum obtained by LC/MS (shown in
Figure 2a) followed a bimodal distribution (Figure 2d), with a
first peak around 200 Da and a second peak of higher
amplitude approximately at 400 Da. When this mass

Figure 2. LC/MS metabolite identification in the expanded metabolic space. (a) Total ion LC/MS chromatogram of an E. coli cell extract. (b)
Extracted ion chromatogram of m/z 172.098. (c) High resolution mass spectrum related to the peak at 8.6 min. Several ions related to the m/z
172.098 are annotated. Please refer to the experimental section for more details related to the LC/MS settings. (d) Comparison of masses
distribution between peaks observed in the MS spectrum of an E. coli extract sample (MSdata), endogenous metabolites according to EcoCyc
database, metabolites in MetaCyc, and masses corresponding to the expanded metabolic space (EMS). (e) Mass assignments at different levels of
precission in the expanded metabolic space (EMS) compared with 5 random metabolite samples drawn from MetaCyc. EMS and random samples
are of the same size.
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distribution is compared with the one corresponding to
endogenous metabolites in E. coli according to the EcoCyc
database, we observed that the distribution in this last database
differs from the one observed in the spectrum, presenting a
single peak around 200 Da. This result could indicate that such
database does not contain annotations for all possible
compounds that are actually produced, because of unannotated
enzymes or enzyme promiscuity. Some of these unannotated
metabolites might be already observed in other organisms, as in
the case of the distribution of masses for all metabolites that are
known to be produced in the MetaCyc database, which
followed a distribution closer to the experimental one (Figure
2d). The assumption that the observed distribution might come
from unannotated enzymes and promiscuous products was
corroborated by the distribution of masses for all compounds
present in the expanded metabolic space for a fingerprint
diameter of 10, which, as shown in Figure 2d, provided a better
coverage of the masses found in the spectrum. Therefore, the
distribution of masses in the expanded space, which takes into
account potential promiscuous activities of the enzymes, seems
to describe better the actual metabolome of E. coli. In order to
find matches between the masses found in that spectrum and
masses of known metabolites, we systematically computed
isotopic and adduct masses (including multimer ions) for
metabolites in the EcoCyc database (Figure 2b and c), which
comprised 2189 compounds. At precision of 10−3 Da, 359 E.
coli compounds were assigned from the spectrum. We used
then the expanded metabolic space in order to search for
matches with compounds generated through the expansion. We
limited the generation of new compounds to those that were
catalyzed by promiscuous enzymes and for which all
cosubstrates and coproducts were already known metabolites
of E. coli BL21. Promiscuous enzymes were determined using a
previously developed tool20 and a recent list of promiscuous E.
coli enzymes.25 Our final metabolic space comprised 2189
metabolites already known to be in BL21 and 712 novel
compounds. Next, adduct masses and isotope masses were
computed for each of the compounds of the BL21 expanded
metabolic space. The resulting masses were systematically
searched in the MS spectra shown in Figure 2e. Finally,
compound assignments were ranked based on the number of
matches with the MS spectra found in a 10 s retention time
window. Using that procedure, we were able of assigning 431
metabolites either already known to be in BL21 or generated
through promiscuous enzyme activity. The metabolite assign-
ment at that level of precision (i.e., 10−3 Da) was significantly
higher than the one that was obtained in a test performed
through 5 random samples of metabolites (Figure 2e), showing
the ability of the expanded metabolic space of increasing the
number of compounds assignments in the chassis metabolome.
Design Space. Metabolic circuit specifications define the

problem that needs to be solved in our previously introduced
metabolic space. Although several types of metabolic circuits
with different functionalities can be conceived, all of them
conceptually belong to the design space of solutions to the
general problem of finding circuits within the metabolic scope
between a given source S and the target set of metabolites T.
Table 1 outlines typical input/output specifications (see formal
details for each type of specifications in the Methods section).
Moreover, other specifications can be envisaged such as
maximum number of involved enzymes or desired intermedi-
ates, which altogether constitute a set of structural constraints
imposed to the solutions.

Starting from the given set of input/output specifications, the
circuit scope is computed in order to find the solution to a
problem that can be stated in the following way: given an initial
set of source metabolites S and a final set of target metabolites
T, find the set of enzymes that are at least involved in one
minimal pathway (as defined in Methods) connecting elements
of T to the source S; that is, the scope should contain only
enzymes that are at least essential for establishing one of the
metabolic pathways. We have recently shown that the scope
problem can be appropriately approached through the
hypergraph formalism and the retrosynthesis technique.26

Namely, the scope algorithm is a two-step process that allows
finding the set consisting of all reactions involved in the
production of a specific compound given a set of initial
compounds. The first step of the algorithm (the forward step)
ensures that among the list of reactions in the metabolic space,
only the reachable ones are kept. This step creates a reduced
graph represented as a predecessor list, which is then traversed
by the backward step. Detailed descriptions of both algorithms
are given in Methods. In addition, we have extended the basic
scope algorithms in two different ways, (1) excluding
compounds for which the reactions producing them are not
stored (this allows for example to represent the cofactors or
currency metabolites of the reactions, i.e., the metabolites
taking part into large number of reactions, e.g. NADH, ATP,
CO2, etc.), and (2) by establishing a minimal scope mode that
stops the forward step at the iteration where the target
compound becomes reachable (in this manner, the network
obtained is the minimal reaction network allowing to produce
the target compound given a set of initial compounds). The
scope algorithm, therefore, allows finding a subspace of the
reaction space (minimal or maximal, depending on the scope
version used) that can contain all the circuits corresponding to
the given specifications.
Once the circuit scope is determined, the next step is to

enumerate all metabolic circuits connecting the source to the
circuit’s target, which is a computationally complex problem
that we have recently addressed26 through different approaches
such as elementary modes or topological analyses. The
approach based on elementary flux modes (EFMs) searches
for all minimal pathways in a network from which any pathway
can be obtained. Such approach, originally proposed for
biosynthetic pathways (production circuits), can be seamlessly
extended to the general problem of enumerating the metabolic
circuits C in Table 1 in their corresponding metabolic scopes by
defining appropriate constraints into the solution types (see a
detailed description in the Methods section).
These previous results showed that the number of alternative

circuits performing a desired task can be quite high, and
therefore, the implementation of all possible circuits in order to
select the best performance might be rendered nonfeasible for
practical reasons. Determining the optimal solution, however, is
nontrivial. Metabolic circuits are often multistep processes
involving many enzymes whose activities have to be finely
controlled in concert for optimal performance. To that end, a

Table 1. Metabolic Circuit I/O Specifications

circuit type source target

production chassis added-value chemicals
sensor biomarkers effectors
regulation products effectors
processing signal metabolites signal metabolites
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circuit cost function is defined J(C) that typically is computed
as an aggregate function of individual costs of elements in the

circuit, that is, enzymes and metabolites, as well as topological
properties of the network, such as maximum expected flux,

Figure 3. Metabolic scope of heterologous pathways in E. coli leading to the production of rosmarinate (ROS). Endogenous precursors tyrosine
(TYR), acetate (ACE), 4-hydroxybenzoate (4HBZ), trans-cinnamate (CINN) and cofactors O2, NADH, NADPH, CoA, ATP, are transformed
through successive steps by catalytic steps. Alternative routes can be found because of enzyme promiscuity, such as for enzymes EC 1.14.13.11 or EC
6.2.1.12. In total, 12 pathways can be enumerated in the scope. The pathway with the best ranking is highlighted in gray. Intermediates in the
pathways are 3,4-dihydroxy-L-phenylalanine (DHP), 4-coumarate (COUM), cinnamoyl-CoA (CCOA), 3-(3,4-dihydroxyphenyl)lactate (DHPL),
caffeate (CAF), 3,4-dihydroxyphenylpropanoate (DHPP), p-coumaroyl-CoA (CCOA), 4-coumaroylshikimate (CSHK), 5-O-caffeoylshikimic acid
(CAFA), caffeoyl-CoA (CAFFCO). Only compounds involved in pathways are represented.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001273 | ACS Synth. Biol. 2014, 3, 565−577569



cross-talk, redox balance, etc. More precisely, in our RetroPath
implementation, we are considering the following aspects:27 (1)
reaction efficiencysince reactions involved in the pathway can
be either catalyzed natively or promiscuously by the enzyme,
the degree of promiscuity of the enzyme, thus, has to be
evaluated;20 (2) inhibition effects, the accumulation of
intermediates in the pathway can lead to inhibition of growth
because of toxicity effects of the compound, and the toxicity in
the chassis, thus, needs to be estimated;28 (3) perturbation
effects, since the insertion of the desired metabolic circuit
necessarily leads to the perturbation in the equilibrium of
metabolism fluxes. The organism readjusts its flux states in
order to find an optimal state between competing objectives.
Our goal, therefore, is to find the optimal circuit configuration
leading to an efficient operation of the circuit through an
adequate ranking of the multiple aspects influencing its
performance.
Bioproduction Circuits. The previous methodology was

applied to the MetaCyc database in order to determine all
possible circuits that can be imported into E. coli for producing
heterologous compounds. A detailed discussion about this type
of circuits based on the KEGG database29 has been presented
elsewhere by the authors.18 In a similar order of magnitude as
in a previous study, we found for the MetaCyc database 2180
heterologous compounds that could be connected through
production circuits to the E. coli chassis. We applied the
previous two-step scope algorithm in order to compute these
values finding an average scope of 39 reactions and maximum
scope of 397 reactions. We applied next the circuit enumeration
algorithm in order to enumerate the circuits contained in the
previously computed scopes. Figure 1d shows the distribution
of found pathway lengths. In total, we found 71307 production,
which followed approximately a Gaussian distribution, with an
average length around 8 enzymes. Approximately 15% of the
cases contained more than 10 circuits, and 3% more than 102.
More generally, the length of the solution circuits (in terms of
reactions) can greatly vary depending on the complexity of the
molecule to create and its distance to the metabolic network of
the chassis organisms. Some of these compounds were value-
added chemicals. For instance, we found in MetaCyc 290
saturated and unsaturated hydrocarbons that are not naturally
produced by E. coli. Among them, RetroPath was able to
connect 178 alkanes, alkenes, and alkynes ranging from C1 to
C40 to E. coli through production circuits. The solutions
involved 300 alternative pathways, with a maximum of 30
alternative pathways for one single compound (pentadecane)
and a maximum pathway length of 7 genes. In the expanded
metabolic space, we found 33 additional hydrocarbons
(excluding aromatics) that could be connected to E. coli.
Another example, shown in Figure 3, is the metabolic scope for
the production of rosmarinate, a natural phenol antioxidant
carboxylic acid, in E. coli. The scope contains in total 12
possible pathways, where some alternative routes are found
because of enzyme promiscuity, as for enzymes EC 1.14.13.11
or EC 6.2.1.12.
Biosensor Circuits. Similarly, metabolic sensor circuits that

process biomarkers through heterologous transformations to E.
coli into metabolites that can induce the expression of a desired
gene were computed in the metabolic space of MetaCyc. We
focused our studies on biomarkers of disease conditions that
have been identified through metabolomics studies, that is, sets
of metabolites (often called metabolic signatures) that can be
linked to pathological states. To that end, we extracted from the

accumulated knowledge of HMDB,30 a human metabolomics
database, a matrix containing 208 diseases and 408 biomarkers
linked to human diseases. In order to implement sensor circuits,
biomarkers need to be connected to metabolites that can
induce gene expression. We selected for that purpose the list of
effectors (36 activators and 42 inhibitors of transcription
factors) in the RegulonDB database,31 a comprehensive
database of transcriptional regulation in Escherichia coli. We
evaluated by these means the possibility of implementing
synthetic biology devices in E. coli consisting of biosensor
circuits for human diseases. A first step was to select those
biomarkers for which RetroPath found metabolic pathways that
led to the production of transcription factor effectors. By
applying the described methodology for circuit enumeration
under the constraints specific to biosensors (see details in
Methods), we enumerated all heterologous pathways that can
be implemented in the chassis linking biomarkers to inducers.
We were able to find 80 biomarkers connecting to 22 inducers
through a total of 331 pathways. For biosensors the average
scope was of 70 reactions and maximum scope of 338 reactions.
Figure 1e shows the distribution of pathways length for
biosensors, which presented a bimodal distribution, with a first
group composed of single-enzyme circuits, that is, biomarkers
that can be transformed into an effector in a single step. This
group formed the majority of the cases since in general most of
the effectors could not be associated to long biosynthetic
pathways and could be explained by the fact that the
corresponding target compounds were already present in E.
coli; hence, there existed reactions to directly produce them.
Furthermore, there were 57 diseases that were characterized

by these 80 biomarkers and thus were found to be connected to
22 different effectors. Since it is known to which inducers the
biomarkers can be connected, we were able to determine to
which inducers the diseases could be linked. The procedure
consisted of multiplying the matrix linking biomarkers to
diseases by the matrix linking biomarkers to effectors to obtain
another matrix giving the connections between diseases and
effectors, as shown in the following equation:

⋮ ∗ ⋮ = ⋮
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1 1 1
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(1)

Based on this matrix, we were then able to link diseases to a
specific set of effectors so that they cannot be mistaken with
one another (see a description of the algorithm in Methods and
a detailed example in the Supporting Information). For
instance, diabetes mellitus was found to be linked to allantoin,
since it can be produced from urate, a compound that is present
at high concentration in subjects at risk of type 2 diabetes
mellitus.32 When reacting with water and dioxygen, urate is
transformed in (S)-(+)-allantoin, which is a regulator of the E.
coli transcriptional activator AllS and repressor AllR, which
participate in the regulation of more than 10 genes that are
involved in the allantoin catabolism pathway33 (see Figure 4).
Teramoto et al.34 achieved a vector construct containing a
green fluorescent protein (GFP) coding sequence next to the
promoter of the E. coli gcl gene which is repressed by AllR.
Such construct could be used to detect diabetes metillus since
the presence of allantoin would repress the gcl gene promoter
and thus the production of GFP, a detectable output signal.
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We also managed to discriminate neurological disorders that
can share similar symptoms by linking each disease to a
different set of effectors. These neurological disorders could be
linked to different or similar effectors (Table 2). The algorithm

managed to select one different effector to be linked to each
disease wherever was possible (Table 3). We particularly

focused on differentiating vascular dementia and Alzheimer’s
diseases, which can be mistaken for each other since they share
the common effector choline. They are both characterized by a
more elevated level of phosphoryl-choline compared to healthy
patients,35 but patients with vascular dementia have a higher
level of S-adenosylmethionine than Alzheimer patients. Indeed,
cerebrospinal fluid of Alzheimer patients has a lower
concentration of S-adenosylmethionine than cerebrospinal
fluid of control subjects.36 Thus, we can detect both diseases
by using the reaction catalyzed by the phosphocholine
phosphatase enzyme which transforms phosphoryl-choline
into choline:

+ → + −H O phosphorylcholine choline PO2 4
3

Then, we can distinguish vascular dementia from Alzheimer’s
disease using the reaction catalyzed by the ethanolamine N-
methyltransferase enzyme, which transforms S-adenosylmethio-
nine into choline and adenosyl-homocys:

‐ + ‐

→ + ‐ + +

S adenosylmethionine N dimethylethanolamine

choline adenosyl homosys H

This means that in the case of vascular dementia, more
choline would be produced than in the case of Alzheimer’s
disease. Choline binds to the betI promoters which then
represses the betA and betT genes in E. coli.37 Such repressor
could be used to regulate a gene triggering a detectable signal
such as GFP. Thus, the output signal intensity in the case of
Alzheimer’s disease would be higher than in the case of vascular
dementia given that the repression increases along with choline
concentration (Figure 4). One must note that the genes coding
for the enzymes phosphocholine phosphatase and ethanol-
amine N-methyltransferase have to be implemented in E. coli.

Bioregulation Circuits. Regulation circuits are at least
composed of two modules, one production module and one
sensor module. These type of circuits can be tuned in order to
control the production level of a desired compound. To that
end, the sensor module implements a feedback loop by
measuring the presence of some chemical that can be related to

Figure 4. Examples of disease detection. (a) Scheme of the detection
of diabetes mellitus: S-allantoin is produced from the reaction between
urate, dioxygen, and water. Only compounds involved in the pathway
are represented. Allantoin binds to AllR which will repress the gcl
promoter that in the construct regulates GFP. The concentration of
GFP is then decreased, which indicates that the person is at high risk
of diabetes mellitus type 2. (b) Scheme of the detection of Alzheimer’s
disease (AD) and vascular dementia (VD). Choline is produced
through enzyme EC 3.1.3.75 in the case of both diseases. It is also
produced through enzyme EC 2.1.1 in the case of vascular dementia.
More choline binds to betI repressor in the case of VD than for AD;
thus, the gene it regulates is more repressed. The protein encoded by
this gene serves as an output signal, which means the output signal
intensity will be higher for AD than for VD.

Table 2. Diseases and Effectors to Which They Can Be
Linked

effectors acetate allantoin glycollate choline

Alzheimer’s disease x
epilepsy x x
meningitis x
multiplesclerosis x
vascular dementia x

Table 3. Transcription Factor Effectors Chosen by the
Algorithm to Characterize Each Neurological Disorder and
Biomakers from Which These Regulators Can Be Produced

diseases biomarker(s) effector

Alzheimer’s disease phosphorylcholine, S-adenosylmethionine choline
epilepsy methionine glycollate
meningitis allantoin allantoin
multiplesclerosis L-cysteine acetate
vascular dementia phosphorylcholine choline
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the concentration of the target product and by connecting such
sensor into an effector circuit that should eventually regulate
the expression of some element linked to the production
circuit. Several mechanisms of regulation are possible. Here, we
focused on mechanisms of regulation that are based on
metabolic circuits that connect the compound of interest to an
inducer through enzymatic transformations. This case, there-
fore, is a combination of the previous cases of metabolic
production and sensing. Starting from the previous list of
heterologous compounds that can be produced in E. coli and
through the application of the described enumeration method-
ology, we found 157 heterologous products in E. coli that can
be connected to activators and 18 products that can be
connected to inhibitors through metabolic pathways (Table 4).

The scope for bioregulators contained an average of 90
reactions and a maximum of 483 reactions. The distribution of
pathway lengths for the bioregulation circuits is shown in
Figure 1f, with a total of 55613 enumerated circuits. Since they
are a composition of the Gaussian distribution typically seen in
production circuits and the distribution for biosensors, the
curve follows approximately a skewed Gaussian, with an average
pathway length around 8. Interestingly, the number of enzymes
needed to form such synthetic bioregulators seemed to be
higher than the ones that are naturally found in organisms. For
instance, we looked at the regulation circuits found in E. coli in
the EcoCyc database. The lengths of these pathways are shown
in Table 5, with a maximum length of 9 and an average length
of approximately 4.

One example of this type of regulation circuits is given in
Figure 5, where the production in E. coli of 4-coumaroyl-CoA, a
precursor for flavonoids,38 is regulated through the insertion of
the eukaryote pathway for the biosynthesis of 4-hydroxyben-
zoate,39 which, in turn, could be used to induce the gene
expression40 regulating the pathway. This circuit could be
therefore used to regulate the production of biosynthetic
pathways for flavanoids derivatives, which constitute a family of
compounds whose efficient production in E. coli is of interest
because of their properties for therapeutics, cosmetics and food
industry.
Bioprocessing Circuits. Metabolic circuits can be used as

well for processing signals and for implementing logical

circuits.41 For instance, we have enumerated in the MetaCyc
database the number of orthogonal metabolic AND and OR
logic gates that could be implemented in E. coli, that is, logic
gates implemented through heterologous enzymes having no
cross-talk with endogenous metabolites of the chassis. In total,
we found 2595 OR gates (i.e., a signal metabolite that can be
produced by an enzyme from different substrates) that could be
implemented through 374 heterologous enzymes and 7904
AND gates (i.e., a signal metabolite that is produced through a
reaction involving multiple signal metabolites) that could be
implemented through 481 heterologous enzymes. An example
of such type of logic relationship between signal metabolites is
given in Figure 6, where and AND gate is used in combination
with biosensing. More complex logic operations and other
metabolic logic gates might be possible to implement15 by
means of other metabolic circuits.

RetroPath: An Automated Design Software for
Metabolic Circuits. Previous results showed the usefulness
of computer-aided tools for automated biodesign of metabolic
circuits. To that end, we have developed RetroPath, an
automated software that implements the described design
methodologies for metabolic circuits, allowing the user to
explore different types of circuits based on the specifications, as
detailed in Methods (see Figure 7). RetroPath consists of
several modules in charge of the different presented algorithms:
(1) the scope and stoichiometric matrix construction
algorithms are implemented as a C++ program; (2) the
elementary flux modes computations relies on the efmtool

Table 4. Summary of the Results for Regulation Circuits

effector type total products total pathways

activator 157 1859
inhibitor 18 65

Table 5. Length of Natural Regulation Circuits for Amino
Acid Biosynthesis

amino acid regulation loop length

alanine 1,2,2,2
arginine 8
asparagine 1
glycine 1,4
leucine 5
lysine 9
phenylalanine 3
tryptophan 6
tyrosine 3

Figure 5. Example of regulation of production of compounds. 4-
coumaroyl-CoA, a main precursor for the flavonoid biosynthesis
pathway, can be sensed through a 2-step circuit that converts the
precursor into 4-hydroxybenzoyl-CoA and then into 4-hydroxyben-
zoate, an effector. 4-coumaroyl-CoA can be heterologously produced
in E. coli in 2 steps from tyrosine through the 4-coumarate
intermediate. Only compounds involved in the pathway are
represented. Scheme of regulation of production of 4-coumaroyl, a
main precursor for flavonoids, through a sensing circuit that converts it
into 4-hydroxybenzoate, an inducer.
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software,42 written in Java. Retropath requires as input the
metabolic space and the corresponding constraints of the
circuit, defined through two formats: (1) the compound file
format as used by RetroPath simply consists in a file listing the
compounds as found in the database in use; (2) the reaction file
format is specified in an EBNF format presented in Supporting
Infomration Figure S1. Regarding the output, metabolic circuits
can be exported into SBML format43 (see Supporting
Information Figure S2), allowing them to be embedded into
in silico reconstruction models of chassis organisms such as E.
coli. This feature allows simulation of distribution of fluxes. In
addition, DNA sequences encoding for the corresponding
enzymes can be annotated in the model through SBOL
(Synthetic Biology Open Language) definitions44 (Supporting

Information Figure S2). Access to RetroPath is currently
availble upon request.

■ METHODS
Definitions. The metabolic space, denoted M, represents

all the possible compounds C and allowed transformations
(reactions) R between compounds. It is represented as an
ordered pair: M = (C,R). A reaction is defined as a
transformation from a set of substrate compounds to as set
of product compounds: R:C1 → C2. A reaction is represented as
an ordered pair: R = (C1,C2). C1 ⊂ C represents the substrate
compounds and C2 ⊂ C the product compounds. A chassis is a
subset of the metabolic space M that corresponds to the
metabolic network of a host organism for metabolic circuits.
Such subset is denoted by O = (CO,RO) ⊂ M and contains all
metabolites and reactions that are considered to be initially
present. Currency metabolites consist of the set CK ⊂ C that
contains all compounds that act as cofactors in the metabolic
reactions. A metabolic circuit S = (CS,RS) ⊂ M = (C,R) is a
subset of the metabolic space M that verifies a list of constraints
λ and some given specifications ε. The circuit interface consists
of two sets of compounds: (1) the precursor set Prec ⊂ CS are
all compounds that need to be available in the medium in order
to make viable all the reactions Rs in the circuit; (2) the
product set Prod ⊂ Cs are all compounds that are produced by
the reactions Rs in the circuit and not further consumed.
Compounds that do not belong to these two subsets are

Figure 6. Example of advanced metabolic circuit. 4-hydroxybenzalde-
hyde, a prostate cancer biomarker is transformed into 4-hydrox-
ybenzoate and benzoate through enzymes EC 1.2.1.64 and EC
1.14.13.12. These molecules can be used as inducers, constituting a
biosensor circuit. Furthermore, benzoate can be transformed into 4-
hydroxy benzoyl CoA and further into benzoyl-CoA, through EC
6.2.1.27 and EC 1.3.7.9, respectively. This last compound can be used
to form an AND logic gate in combination with benzyl-alcohol to
produce benzylbenzoate through enzyme EC 2.3.1.196, that could be
further degraded into toluene, another inducer. Only compounds
involved in the pathway are represented.

Figure 7. RetroPath pipeline. The inputs are taken from a given
metabolic database and they are processed in order to generate the
scope, generate the stoichiometry matrix, compute the EMFs and
enumerate the pathways. The output can be further processed to
create an image of the pathways or converted into the desired format.
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defined as inner compounds of the circuit CI ⊂ C: CI ∩ u ∩ y = ⌀
(see definitions for u and y below).
Circuit Specifications. The specifications of a metabolic

circuit dictate relationships between selected precursors, known
as the input set u ⊂ Pred; and selected products, known as the
output set y ⊂ Prod. Without loss of generality, a circuit
specification is defined by some relationship between the input
and the output that the circuit should implement: εS: y = S(u).
General constraints on metabolic circuits, denoted by λ, should
be verified by any metabolic circuit. They can be classified into
three categories: (1) Compound constraintsthese are
constraints that are usually defined in order to limit the
possible type of compounds appearing in the circuits. The most
common compound constraint is that of heterogeneity; that is,
inner compounds should not contain chassis compounds
(excluded currency compounds): λCH: (CI \ CK) ∩ CO = ⌀.
(2) Reactions constraintsthese constraints affect which
metabolic reactions can appear in the circuits. A basic
requirement is that of heterogeneity of reactions; that is,
reactions in the circuit do not appear in the chassis: λRH: RS ∩
RO = ⌀. (3) Topology constraintsthese constraints affect the
structures of the accepted solution networks. Typically, in order
to avoid metabolic burden, we require a metabolic circuit to
implement a “minimal pathway”,26 which consists of a set of
reactions where the removal of any of them would render the
circuit nonviable, that is, λMP:S* = (Cs*,Rs*) s.t ∃̷S′ = (CS′,RS′|RS′
⊂ RS ∧ y = S′(u)).
Besides the general constraints previously described, λCH,

λRH, and λMP, which, unless stated, are common to all circuits,
some others might appear depending on the specifications of
the metabolic circuit: (1) Production circuitsthe objective
of production circuits is to produce a metabolite in the chassis
by importing genes from other organisms. Specification: u ⊂
CO; y ⊂ C \CO. (2) Biosensing circuitshere, the objective is
to transform a set of compounds of interest (biomarkers) into
compounds that can regulate gene expression. Specification: u
⊂ C biomarkers; y ⊂ C effectors of gene expression. (3)
Bioregulation circuitsthey are formed by the interconnec-
tion of two metabolic circuits, one production circuit S1 and
one biosensing circuit S2, which should be orthogonal.
Specification: S1 ⊥ S2. (4) Bioprocessing circuitsin these
circuits, the relationship between the input signal compounds
and the output signal compounds should follow a particular
transfer function. Specification: y = f(u).
Circuit Scope. The scope Sc of a circuit specification y =

S(u) is a metabolic space that contains all reactions involved in
at least one circuit that in addition to the specification, verifies
the circuit constraints. The scope algorithm ensures that the
circuit verifies the compound and reaction constraints λCH, λRH.
The algorithm consists of two steps: (1) The forward step
(Algorithm 1), starts from the set of initial compounds (input
set u) and iteratively finds newly reachable compounds. The
iterations stop when a fixpoint is reached; that is, no newly
reachable compounds were found in the last iteration. For each
compound, the algorithm keeps track of which reaction
produced it. A compound is reachable if there exists a reachable
reaction that can produce it, that is, a reaction for which all its
substrates are reachable. (2) The backward step (Algorithm 2),
starts from the compound of interest (output set y) and goes
back to the initial compounds as follows: For each reaction that
can produce the target compound, add it to the scope and
recursively apply the same procedure on each substrate of the

reaction. The recursion stops when initial compounds are
reached (there is no reaction to produce it).

Circuit Enumeration. From the scope Sc of a circuit
specification y = S(u), the enumeration of all viable circuits can
be enumerated by following several algorithms.26 One of the
possible algorithm is the one based on the decomposition of
the reactions that span the scope Sc into their elementary flux
modes (EFMs).45 EFMs are the set of minimal pathways that
are nontrivial solutions to the steady-state equation whose
combination can describe any possible path in the network.
Several toolboxes exist that allow to efficiently compute the
elementary modes from the stoichiometric matrix S by
computing the nontrivial solutions to the steady-state equation:
Sv = 0, where S is a matrix where each row corresponds to a
compound in the circuit Cs and each column to a reaction Rs
and the value of each cell is the stoichiometric coefficient. In
order to solve the circuit enumeration problem, the
stoichiometric matrix is constructed in a specific manner
starting from the scope of the target compound: (1) remove all
rows representing initial compounds; (2) remove all rows
representing compounds that are produced by a reaction but
never used in any other; (3) merge equivalent column that can
have been created because of steps 1 and 2 (it consists in
deleting redundant columns and renaming the remaining

Algorithm 1.

Forward step of the scope algorithm, the condition reachable(r)
can be translated as ∀s ∈ substrates(r),s ∈ pred and denotes the
fact that all the substrates of the reaction r have been reached.

Algorithm 2.

Backward step of the scope algorithm, enumerating all reactions
involved in the production of a target compound.
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column with the names of all reactions); (4) add an additional
column to create a flux out for the target compound. By
following these steps, one can obtain a minimal matrix
modeling the circuit enumeration problem that is suitable to
use with the EFM algorithm. Since we are only interested in
solutions that involve the input set u and the output set y,
further simplifications can be done in the matrix for faster
computation by removing precursors and products that do not
form part of the input/output sets of interest. In that way, each
EFMs provides a solution that connects the input u to the
output y and solutions can be filtered in order to verify the
constraint of minimal pathway λMP.
Disease-Biomarker Biosensor Detection. In the case of

biosensor circuits, the problem of circuit enumeration is
augmented with the problem of finding a right combination
of effectors for detecting multiple diseases. To detect a certain
group of diseases, we built an algorithm that assigns effectors or
combination of effectors to biomarkers associated with diseases
states so that the disease can be easily detected. The starting
point is a matrix showing which effectors can be linked to which
disease. Such matrix is computed through the application of the
RetroPath workflow for determining circuits that can connect
the input set of 408 biomarkers linked to human diseases to the
set of 78 effectors from RegulonDB with the ability of activating
or inhibiting transcription factors. In total, RetroPath found 80
biomarkers connected to 22 effectors. From this matrix, the
algorithm finds an optimal way to link a disease to a unique set
of effectors so that it cannot be mistaken with one another. It is
composed of three steps and returns for each disease one
effector or a set of effectors which will be used to detect the
disease by inducing the expression of one or more desired
genes (a detailed example can be found in the Supporting
Information):

a. In the first step, the algorithm finds diseases that can be
characterized by only one effector. After selecting such
effector and disease couple, it deletes the row and
column representing them from the previous matrix. It
redoes it for the newly formed matrix since deleting a
disease can “artificially” make an effector now linked to
only one disease.

b. The second step consists in reordering the rows of the
matrix such that diseases that can be characterized by
fewer effectors than the other ones are at the top and the
ones that are characterized by a more important number
of effectors are at the bottom.

c. The last step has for goal to assign a unique combination
of effectors to characterize each disease (Algorithm 3).
The idea is to proceed per round for a particular disease.
In the first one, the algorithm searches for one effector
that is not already linked to another disease. If they are all
already linked to another disease, then it starts searching
for a combination of two effectors that does not already
characterize a disease, etc. It continues in that way until it
finds the right combination or when the only
combination possible is the combination of all the
effectors that can be linked to this disease.

Data Sets. The metabolic space was computed using the
MetaCyc database19 in its 16.0 release containing 9623
metabolites and 10263 reactions. Disease biomarkers were
obtained from the HMDB database,30 comprising 208
metabolite biomarkers and 408 disease conditions. Effectors

(36 activators and 42 inhibitors of transcription factors) in
Escherichia coli were taken from the RegulonDB database.31

Experimental Procedure for E. coli Metabolite
Identification. We cultured E. coli BL21 strains at 37 °C
and lysed the cells through a freeze/defreeze cycle. The sample
was then subjected to LC/MS analyses. Analyses were carried
out with a Nexera LC system (Shimadzu, Marne la Valleé,
France) coupled with an Exactive mass spectrometer (Thermo-
Fisher scientifics, Courtaboeuf, France). The chromatographic
separation was performed on a Discovery HSF5 pentafluor-
ophenylpropyl (PFPP) column (2.1 mm × 150 mm, 5 μm)
from Sigma-Aldrich (Saint Quentin Fallavier, France),
equipped with an online prefilter (Interchim, Montlucon,
France). The mobile phases were (A) 100% water and (B)
100% acetonitrile, containing 0.1% formic acid. Elution was
performed at a flow rate of 250 μL/min, using the following
gradient conditions: 0−2 min, 5% B; 2−20 min, from 5 to
100% B; 20−24 min, 100% B; 24.1−30 min, 5% B. Bacterial
extract (10 μL) was injected into the LC/MS system. Mass
spectrometric detection was performed using an Orbitrap-
Exactive mass spectrometer (Thermo Fisher Scientifics,
Courtaboeuf, France) fitted with an electrospray source (ESI)
operated in positive ion mode, at a mass resolving power of 100
000 (m/Δm, full width at half-maximum of peak intensity, for
an ion at 400 Da).
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giving a new possibe combination of effectors linked to a
disease D given the matrix M.
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